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What is causal inference?

• The formal process of assessing cause and e�ect

:
”Require us to provide mathematical definitions that agree with
the investigators informal and intuitive research questions”
(loosely citing Robins 1987)

• Not magic: we calculate functions of observed data and
interpret the output

• A framework to i) ensure that the outputs answer to well
defined research questions and ii) help us avoid methodological
pitfalls when answering them, iii) which have led to many new
methodological developments
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A classification of data analytic tasks

1 Description (e.g. of disease prevalence)

2 Prediction (e.g. for prognosis or diagnosis)

3 Causal prediction (e.g. for e�ects of medical treatments)

See e.g. Shmueli 2010 and Hernan et al. 2019
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Causal versus statistical inference

• Causal inference require an extra layer:
causal assumption + statistical assumptions + data

• See also Pearl’s ladder of causation:
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Interventionism

• Causal e�ects are most easily defined through interventions

:
What is the average outcome if everyone gets treated vs not?

• Formalised through causal estimands:
ATE = E (Y a=1) ≠ E (Y a=0),

for an outcome Y and treatment A taking values a
”No causation without manipulation” (Holland 1986)
Some follow Holland’s mantra more dogmatically than others,
but most would agree it simplifies things...

5 / 13

https://doi.org/10.1080/01621459.1986.10478354


Interventionism

• Causal e�ects are most easily defined through interventions:
What is the average outcome if everyone gets treated vs not?

• Formalised through causal estimands:
ATE = E (Y a=1) ≠ E (Y a=0),

for an outcome Y and treatment A taking values a
”No causation without manipulation” (Holland 1986)
Some follow Holland’s mantra more dogmatically than others,
but most would agree it simplifies things...

5 / 13

https://doi.org/10.1080/01621459.1986.10478354


Interventionism

• Causal e�ects are most easily defined through interventions:
What is the average outcome if everyone gets treated vs not?

• Formalised through causal estimands:
ATE = E (Y a=1) ≠ E (Y a=0),

for an outcome Y and treatment A taking values a

”No causation without manipulation” (Holland 1986)
Some follow Holland’s mantra more dogmatically than others,
but most would agree it simplifies things...

5 / 13

https://doi.org/10.1080/01621459.1986.10478354


Interventionism

• Causal e�ects are most easily defined through interventions:
What is the average outcome if everyone gets treated vs not?

• Formalised through causal estimands:
ATE = E (Y a=1) ≠ E (Y a=0),

for an outcome Y and treatment A taking values a
”No causation without manipulation” (Holland 1986)

Some follow Holland’s mantra more dogmatically than others,
but most would agree it simplifies things...

5 / 13

https://doi.org/10.1080/01621459.1986.10478354


Interventionism

• Causal e�ects are most easily defined through interventions:
What is the average outcome if everyone gets treated vs not?

• Formalised through causal estimands:
ATE = E (Y a=1) ≠ E (Y a=0),

for an outcome Y and treatment A taking values a
”No causation without manipulation” (Holland 1986)
Some follow Holland’s mantra more dogmatically than others,
but most would agree it simplifies things...

5 / 13

https://doi.org/10.1080/01621459.1986.10478354


A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher
• 1948: First randomised clinical trial on the e�ect of streptomycin for

pulmonary tuberculosis, much due to statistician Bradford Hill
• 1954: Observational study by Doll and Bradford Hill considered to have

established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin
• 1986: Introduction of g-methods by Robins
• 1995: Pearl’s first full paper on causal diagrams (DAGs)
• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in

clinical trials

6 / 13



A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher
• 1948: First randomised clinical trial on the e�ect of streptomycin for

pulmonary tuberculosis, much due to statistician Bradford Hill
• 1954: Observational study by Doll and Bradford Hill considered to have

established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin
• 1986: Introduction of g-methods by Robins
• 1995: Pearl’s first full paper on causal diagrams (DAGs)
• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in

clinical trials

6 / 13



A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher
• 1948: First randomised clinical trial on the e�ect of streptomycin for

pulmonary tuberculosis, much due to statistician Bradford Hill
• 1954: Observational study by Doll and Bradford Hill considered to have

established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin
• 1986: Introduction of g-methods by Robins
• 1995: Pearl’s first full paper on causal diagrams (DAGs)
• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in

clinical trials

6 / 13



A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher
• 1948: First randomised clinical trial on the e�ect of streptomycin for

pulmonary tuberculosis, much due to statistician Bradford Hill
• 1954: Observational study by Doll and Bradford Hill considered to have

established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin
• 1986: Introduction of g-methods by Robins
• 1995: Pearl’s first full paper on causal diagrams (DAGs)
• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in

clinical trials

6 / 13



A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher
• 1948: First randomised clinical trial on the e�ect of streptomycin for

pulmonary tuberculosis, much due to statistician Bradford Hill
• 1954: Observational study by Doll and Bradford Hill considered to have

established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin
• 1986: Introduction of g-methods by Robins
• 1995: Pearl’s first full paper on causal diagrams (DAGs)
• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in

clinical trials

6 / 13



A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher

• 1948: First randomised clinical trial on the e�ect of streptomycin for
pulmonary tuberculosis, much due to statistician Bradford Hill

• 1954: Observational study by Doll and Bradford Hill considered to have
established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin
• 1986: Introduction of g-methods by Robins
• 1995: Pearl’s first full paper on causal diagrams (DAGs)
• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in

clinical trials

6 / 13



A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher
• 1948: First randomised clinical trial on the e�ect of streptomycin for

pulmonary tuberculosis, much due to statistician Bradford Hill

• 1954: Observational study by Doll and Bradford Hill considered to have
established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin
• 1986: Introduction of g-methods by Robins
• 1995: Pearl’s first full paper on causal diagrams (DAGs)
• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in

clinical trials

6 / 13



A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher
• 1948: First randomised clinical trial on the e�ect of streptomycin for

pulmonary tuberculosis, much due to statistician Bradford Hill
• 1954: Observational study by Doll and Bradford Hill considered to have

established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin
• 1986: Introduction of g-methods by Robins
• 1995: Pearl’s first full paper on causal diagrams (DAGs)
• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in

clinical trials

6 / 13



A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher
• 1948: First randomised clinical trial on the e�ect of streptomycin for

pulmonary tuberculosis, much due to statistician Bradford Hill
• 1954: Observational study by Doll and Bradford Hill considered to have

established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin
• 1986: Introduction of g-methods by Robins
• 1995: Pearl’s first full paper on causal diagrams (DAGs)
• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in

clinical trials

6 / 13



A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher
• 1948: First randomised clinical trial on the e�ect of streptomycin for

pulmonary tuberculosis, much due to statistician Bradford Hill
• 1954: Observational study by Doll and Bradford Hill considered to have

established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin

• 1986: Introduction of g-methods by Robins
• 1995: Pearl’s first full paper on causal diagrams (DAGs)
• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in

clinical trials

6 / 13



A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher
• 1948: First randomised clinical trial on the e�ect of streptomycin for

pulmonary tuberculosis, much due to statistician Bradford Hill
• 1954: Observational study by Doll and Bradford Hill considered to have

established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin
• 1986: Introduction of g-methods by Robins

• 1995: Pearl’s first full paper on causal diagrams (DAGs)
• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in

clinical trials

6 / 13



A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher
• 1948: First randomised clinical trial on the e�ect of streptomycin for

pulmonary tuberculosis, much due to statistician Bradford Hill
• 1954: Observational study by Doll and Bradford Hill considered to have

established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin
• 1986: Introduction of g-methods by Robins
• 1995: Pearl’s first full paper on causal diagrams (DAGs)

• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in
clinical trials

6 / 13



A history of causal inference in medicine

• 600 BC: Early description of clinical trial in Book of Daniel

• 1662: First known proposal of randomisation by van Helmont to compare
treatment with and without bloodletting and purging for fever

• 1747: James Lind’s scurvy trial

• 1923: Jerzy Neyman introduce counterfactuals

• 1925: Formal theory of randomised trials by Ronald Fisher
• 1948: First randomised clinical trial on the e�ect of streptomycin for

pulmonary tuberculosis, much due to statistician Bradford Hill
• 1954: Observational study by Doll and Bradford Hill considered to have

established e�ect of smoking on lung cancer

• 1974: Donald Rubin introduce counterfactuals (potential outcomes) in
the context of observational studies

• 1983: Introduction of the propensity score by Rosenbaum and Rubin
• 1986: Introduction of g-methods by Robins
• 1995: Pearl’s first full paper on causal diagrams (DAGs)
• 2020: ICH E9 (R1) addendum on estimands and sensitivity analysis in

clinical trials

6 / 13



Observational versus randomized studies

• Randomised studies (RCTs) are the ideal for assessing
questions of causal e�ects
... and they should be – but they are not alway feasible

• RCTs will often struggle with contamination, drop-out,

non-compliance, missing data and lack of generalisability

These are all observational features – hence; the dichotomy
between observational studies and RCTs is a false one

• Target trials have entered observational studies, specifying
protocols of hypothetical trial to avoid common pitfalls
(observational studies analysed like RCTs)

• Estimands have entered ICH E9 guidelines for RCTs
(RCTs analysed like observational studies)
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The causal roadmap

1 Specify estimand (e.g. aided by target trial protocols)
2 Lay out assumptions needed for identification

(e.g. aided by graphical methods like DAGs)
3 Estimate (e.g. by regression, matching, weighting, g-formula,

doubly robust methods, machine learning, etc)
4 Sensitivity analysis to assess assumptions

Can argue that this is a more general principe
borrowing the logic of the scientific method
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Example using clinical and nation-wide registers

• Data from the Norwegian Trauma Registry linked with
various national registries on 26 562 trauma patients between
2015-2018 in the so-called NTR+ cohort dataset

• How do we study the e�ects of early opioid use on long
term use?
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• E�ect of ”opioid saving” drug prescriptions (NSAIDs)

versus no NSAIDs week 3–10)

• Can be thought of as sustained strategies ā = {a0, a1, a2, ...}
assigned at baseline, where al = 1 if an individual still follow
the assigned regime at day l and 0 otherwise
Strategies followed is not identifiable for individuals at baseline

• Can use explicit target trial emulation using grace periods:
clone/censor/weight approach (see e.g. Gaber et al. 2024)
Write out full protocol as in real RCT: specify eligibility criteria (opioid
prescription day 0-14), time zero (14 days after discharge), treatment
strategies (as above), baseline adjustment variables (age, sex, income,
history of opioid use, geography, injury scores and type, comorbidities,
hospital stay characteristics etc), time-varying adjustment variables (health
visits in KUHR and NPR, opioids and other drug use) and long term opioid
use as outcome (certain amount prescribed over 90 days, followed up by
new prescriptions)
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use as outcome (certain amount prescribed over 90 days, followed up by
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• Broader outcomes of interest:

Discharged Event

A. Simple survival model

0 1

Discharged

Long term user

Death/re−trauma

B. Competing risks model

0

1

2

0 1 2 ...

C. Reccurent events model

Discharged

Long term use

Death

D. Illness−death model

0

1

2

No use

Use

Event

E. Illness−death model with recovery

0

1

2

Work

Absence

Rehabilitation

Retirement

Death

F. Larger multi−state model

0

1

2

3

4
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Summed up

• Formal causal language represent a major advance – bound
to take over every area of research where intervention and
treatment play a role

• Interventionism is about studying e�ects that are testable in
principle; in other words it is about being scientific

• Causal inference is not about being overly optimistic about
causal claims, but about being transparent and honest
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